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Classical and thermodynamic limits in a system of
interacting quantum spins
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Received 12 September 1995

Abstract. We study a model system composed of interacting quantum spins, with every spin
coupled to every other, in the limit where the number of sginand the angular momentugh

of each spin are both large, aiming to explore the effect of large system size on the breakdown of
the classical limit of quantum mechanics. We obtain the exact spectrum of the Hamiltonian, and
hence the trac&/(r) of the quantum-mechanical time-evolution operator. We examine the time
dependence d¥{(7), finding a simple approximation which is valid whgnand K are large.

At a time proportional toj /K, this approximation breaks down, and the long-time behaviour

is extremely complex. We use a renormalization scheme to investigate this complexity. The
scheme is based upon a generalization of the Gauss continued-fraction map to the complex
plane.

1. Introduction

Both the classical and the thermodynamic limits are important to our understanding of the
world in terms of fundamental physical laws. We can regard most everyday objects as
practically infinite on an atomic scale, and this justifies the use of the thermodynamic limit,
where the size of a system is taken to be infinite. Similarly, the Planck constant is so small
that quantum effects are completely negligible in everyday life. This is the reason that the
existence of quantum mechanics was not suspected until the twentieth century.

Since these limiting cases of the fundamental laws are so commonly used and
so important to physics, it is unfortunate that the limits involved are not simple or
mathematically well behaved. Berry [1] has discussed this problem in general. In this paper,
we investigate a simple quantum system where both the classical and the thermodynamic
limits can be explored, hoping to shed some light upon the combined effect of the two
limits. Our main conclusion will be that at long times, the classical and thermodynamic
limits lead to extremely complex behaviour. This is in contrast to the simplicity of the time
dependence at short times in these limits.

Since in both classical and thermodynamic limits, the quantum density of states becomes
large, we might expect to find analogies between the two limits. For example, it is well
known that approximations which are valid for large quantum numbers, and also those
which are valid for large system size, often break down at long times.

In the field of research known as ‘quantum chaology’, this observation resolves a
paradox. Consider the quantum-mechanical version of a chaotic classical dynamical system.
Since a finite quantum system has a purely discrete spectrum, its time dependence must be
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guasiperiodic, and therefore not chaotic. But the Ehrenfest correspondence theorem claims
that in the classical limit, the quantum mechanics of the system must approach the chaotic
classical behaviour.

This apparent paradox is resolved by the observation that there are two time-scales
involved. For short times, quantum-mechanical wavepackets follow classical trajectories,
which may be chaotic. However, over large time-scales, the classical limit breaks down, the
guantum-mechanical nature of the system becomes apparent and the motion is quasiperiodic.
This subject was reviewed by Chirikat al [2]. More recently, detailed studies [3] of the
guantum time evolution of classically chaotic systems have suggested that, in general, the
semiclassical approximation breaks down at some critical time

1 I
w~ loa (1) W

where A is the largest Lyapounov exponent ahds proportional to the size of the phase
space. A simple argument for this result is as follows [3]. A wavepacket representing
a quantum particle cannot be localized on a scale smaller ih@or perhapsh?>—this
makes no difference to the argument), because of the uncertainty principle. For a chaotic
system, trajectories diverge exponentially with time s elence after time, the extent of
a wavepacket is of the order afe¢”’. The semiclassical approximation breaks down when
the wavepacket has spread out so that its size is of the order of thd sik¢he phase
space. Hence we have a critical time as in equation (1).

For non-chaotic systems, this argument must be modified because trajectories diverge
with time, not exponentially, but linearly. In this case we would expect a time-scale

1
T (2)
The results which we shall derive for our simple model system will be closer to equation (2)
than to equation (1), suggesting that the classical version of the system is not chaotic.

In non-equilibrium statistical mechanics, the thermodynamic limit is often invoked to
derive irreversible behaviour such as the approach to equilibrium. The approximations used
here also break down at long times. Two examples are the harmonic-oscillator assembly
of Mazur and Montroll [4], and the rigorous derivation of the Boltzmann equation for a
hard-sphere gas, first given by Lanford [5], and discussed by Spohn [6].

In this paper, we investigate a model system composed of quantum spins. We calculate
the trace of the quantum-mechanical evolution operator for large values of the number of
spins K and the magnitude of each spjn The trace is a typical time-dependent quantity
because it contains the time dependences of all the energy eigenstates of the system. We
find that a simple approximation is valid in the limit where bgttand K are large, but
that this approximation breaks down at large times, just as we would expect a semiclassical
approximation to break down. The time at which the approximation ceases to be valid
is proportional toj,/K. For times longer than this, the time dependence is extremely
complicated.

In the next section, we briefly review some earlier work on the properties of classical
and thermodynamic limits in quantum spin systems. In sections 3-5, we introduce the spin
system which is the subject of the present paper, obtain the spectrum of the Hamiltonian, and
find the trace of the evolution operator. A simple approximation for the time dependence
of the trace at short times is derived.

In section 6, we study the long-time behaviour of the trace. We use a renormalization
scheme which depends upon some properties of elliptic functions and a generalization of
Gauss'’s continued-fraction mapping. A related scheme was used by Berry and Goldberg
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[7] to study a single precessing quantum spin. We find that the long-time behaviour of the
trace is complex, with complexity growing as we incregsand K .

2. Previous work on quantum spin systems

Theoretical work on qguantum-mechanical spin systems has been concentrated in two areas:
the thermodynamic limit where the number of spins is large, and the classical limit where
the magnitude of each spin is large. A review of the nature of integrability in both cases
has been given by Mler [8].

Fisher [9] was the first to consider the classical limit of a quantum-mechanical spin
chain. He derived the partition function for a linear Heisenberg model with isotropic nearest-
neighbour coupling in the classical case, and compared the thermodynamics of the model
with that of quantum spin chains. Millard and Leff [10] put this work on a rigorous base
with a proof that for a Heisenberg model with any coupling, the classical limit of the
guantum canonical partition function is the classical partition function.

More recently, the study of ‘quantum chaos’ has revived interest in the classical limit,
and a number of studies of small clusters of quantum spins in the classical limit have been
made [11-13]. These studies have mostly focused on the distribution of eigenvalues of
the Hamiltonian. However, Berry and Goldberg [7] have found surprisingly complex time
dependence in the trace of the evolution operator for a single precessing spin.

Exactly-solved models of large quantum systems have generally been restricted to the
case of spin% particles. Examples are the isotropic linear Heisenberg model, which was
solved by Bethe [14] with his ansatz, and th& model of Liebet al [15]. Neither the
Bethe ansatz nor the transformation to a representation in terms of fermion operators which
is used for theXY model generalizes to spins of magnitude greater t@arReprints of
these papers and many others are included in a fascinating collection compiled by Mattis
[16].

We should also mention the work of Berman and Zaslavsky on atoms interacting with
a radiation field [3]. Both integrable and non-integrable (chaotic) versions of this system
were considered. Numerical studies showed that the dependence of the time;swale
was logarithmic, as in equation (1) in the non-integrable case, and linear, as in equation (2),
when the system was integrable.

As far as the author knows, no analytical results have been published on the properties
of large systems in the classical limit. The present work is intended as a beginning to the
study of this problem, which has obvious physical importance.

3. The model

The model system which is the subject of this paper consist& afuantum spins, each
with angular momentum quantum numbgrinteracting via the Hamiltonian

H = —)7285 *Sj. (3)
iJ

We can picture this Hamiltonian as representing a cluster of spins, each spin interacting
equally with every other spin in the cluster. A less physical interpretation is to think of the
spins as being placed on a network which is a complete graph; that is, where every site is
connected to every other site.

The equilibrium statistical mechanics of physical systems placed on a complete graph
has been the subject of some interest. A model proposedodlly [L7], and investigated
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first by Toth and then by Penrose [18], consisting of a lattice gas of bosons with hard-core
repulsions, was the first interacting system where Bose condensation was demonstrated to
occur.

The model Hamiltonian (3) arises when we apply the mean-field approximation to a
Heisenberg model of interacting spins with some local interaciign The Heisenberg
Hamiltonian is

HH = — Z J,'J'S,' *Sj. (4)
i#]
In the mean-field approximation, we replace one of the spin operajars each product
s; - s; with s, the average over the whole system:

_ 1i 5)
S = — Sy .
K=

Assuming that the interactiaf); is translationally invariant, we then obtain the Hamiltonian

{;EMJ%},% (6)

which is just the model Hamiltonian (3), with

1
V—K;h- ()

In the present paper, we shall be investigating the behaviour of this model in the limits
where the number of spin&k’, and the magnitude of each spip, become large. It is
therefore important to decide upon the scaling behaviour of the intergetaswe increase
the parameter& andj. We takey to be inversely proportional to the system skeas in
equation (7), so that the total energy scales linearly iithAs we take the semiclassical
limit j — oo, we hold the spin—spin interaction energy, which is of org&¥, constant.

The interaction parameter will therefore be written as

_r
KjG+1
wherey is a coupling constant independent fand ;.

7= (8

4. The spectrum of the Hamiltonian

We shall not attempt to find the energy eigenstates of the Hamiltonian (3) in terms of the
individual spin states. We consider only the eigenvalfigsand their degeneracies. We
shall derive approximate expressions for the degeneracies, which are valid in the limit where
j and K are large. This information will be used to investigate the behaviour of the trace
of the quantum time-evolution operator, in the combined limik — oo.

4.1. Eigenvalues

We shall be able to find the eigenvalues of the model Hamiltonian (3) without difficulty
because the Hamiltonian is closely related to the total angular momentum of the system.
Since the total angular momentum operator is

J=>s (9)
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we have simply
H=—-yJ?. (10)
The eigenvalues off are therefore
E;=—J(J +1yR?
J(J + DyRr?
Kj(j+1
For simplicity, we assume that is an integer, so thaf also ranges over integer values.
The range of/ is

0<J<Kj. (12)

(11)

To determine the energy spectrum Hf, we need only find the degenerady, of each
eigenvalueE.

4.2. Degeneracies
We define the total spin quantum numbédrand M by the eigenvalue equations

J2|J, M)y =R2J(J + 1)|J, M) (13)
and

J|J, My =REM|J, M) . (14)

The components$J,, J,, J;) of the operatoJ have all the well known [19] properties
of angular momentum operators. In particular, by acting upon a quantum $tate with
the ladder operators

Jp=J, £iJ, (15)

we can construct a family q2J + 1) states, sharing the sanie but each having a different
integer value ofM in the range—J < M < J. This means that the degeneracy of the
guantum number must be a multiple of2J + 1). We write

N, = (J + 1N, . (16)

The degeneracy will depend upon the system &izand the magnitudg of the spins.
We therefore use the notation

N;=N,;(j,K). (17)

Similarly, each eigenvalue of, has some degeneraay; (j, K).
Because every family of2/ + 1) states has one membgf, M) with each value ot
such that M| < J, the relationship betweeN;, the number of families, and,, is

nu(j, Ky =Y NG, K). (18)
J=IM|

Alternatively, we may write
Ny G K) =n;0, K) = nypa(, K). (19)

In order to find the degeneraci@g, of the energy eigenvalues, we first fing, using
a recursion relation, and then derive tNe using equations (16) and (19).

The recursion relation fat,, follows from some elementary facts about the addition of
angular momentum in quantum mechanics.
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Suppose that two systems with angular momentum operdtérand.J® are combined,
so that the operator for total angular momentum is
J=JY +J@. (20)

The quantum numbe¥ for the z-component of the total angular momentum is the sum of
the quantum numbers for the individual systems:

M=MY+M?. (21)
Hence the degeneracy for this quantum numideis given by
ny = Z nﬁ\,l,)ln%,zll (22)
Mi+My=M

For our system oK spins, each with angular momentumwe therefore have
J
nn(, K +D =" nnli, Dnr-m (s K) . (23)

m=—j
This is the recursion relation which we need to derive the degeneracies. The values of
ny(j, K) for K =1 are simply

1 for |M| < j

. (24)
0 otherwise.

There is a close analogy between this problem and one from the theory of probability.
Consider the distribution over the integers given by

1/@2j+1  for|n| < j
= 25
p(m { 0 otherwise . (25)

The distributionPg (x) of the random variable
K
Xk = Zni (26)
i=1

which is the sum ofK independent integers taken from the distributipm), obeys a
recursion relation similar to (23):
j
Peia(x) = ) p(m)Px(x —m). (27)

m=—j

For large K, the central limit theorem [20] tells us thad is well approximated by a
Gaussian:

p N 1 x? 28
This approximation is discussed in the appendix, where we show that
Kji(j+1
52 — % (29)

so that

(30)

. K 2
nM(].’K):(21+1) X( x)

(21 §2)1/2 282
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for large j and K. In the appendix, we show that the convergence of the degeneracies to
this approximation is uniform iry for large values ofi and K. We can therefore use this
approximation with confidence in the region wherand K are large.

The next step is to findv, (j, K) using equation (19). We obtain

- Rj+DE JJ+1) J J+1
N;(j, K)~ (2713‘2)1/2eXp(_252> [exp(—zsz> - exp(—zszﬂ . (32)

Expanding the quantity in square brackets as a power series gives
= (2j + ¥ J(J +1) J
N;y(j,K)> @I+ Dexpl ——==— ) |1+ 0( = ) |- 32
10, K) 233(271)1/2( + 1) exp 552 +0( o (32)
Since|J| < Kj, and S? is given by equation (29),
S K1
SZ ~ KJ'Z ]
so that wheny is large, we can neglect the terms of ordeis? in (32). We thus arrive at
our final expression foWN, valid when bothj and K are large:

C R+ 3 ¥2 3/(J+1)
NG K= 5 amr (Kj(j+1>> (2J+1)exp<_2Kj<j+1>)' (59

(33)

5. The trace of the quantum evolution operator

The quantum-mechanical time-evolution operatbris defined as follows. If we have a
time-dependent quantum stat&r), then

U (s) =¥ (s +1). (35)

That is, U, carries states towards the future by a timdt can be written in terms of the
eigenstatese,) and eigenvalue®, of the Hamiltonian:

U= lex)(es| €5/ (36)

The tracd/(¢) of this operator gives a scalar, time-dependent quantity which is the simplest
characterization of the quantum dynamics of a system:

Uy =Tru, =y e'bi/h, (37)

The trace of the evolution operator, and its Fourier transform, the density of states, have
often been used to study ‘quantum chaos’. A large amount of theoretical work has been
devoted to deriving semiclassical formulae, such as the Gutzwiller trace formula, for the
density of states [21, 22]. Berry and Goldberg [7] have usgd as a simple characterization
of the time dependence of a system, in the same way that it is used here.

For the interacting spin system which we consider héf@) can be written in terms
of the energies, and their degeneracie¥, = (2J + 1)N,:

JjK -~
Uty =Y (21 + DN, (j. K) e Fi/m (38)
J=0

From equations (11) and (34), we have

JjK )
U(t) ~2C Y (2] + 12/ UHDs (39)
J=0
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whereC is the time-independent quantity

2j + DX 3 %2
c= B (40)
@2m)2 \Kj(j+1)
andz is a complex number,
1 3i
= - =), 41
¢ Kj(j+1)<’+2> 4D
To simplify our equations, we use the dimensionless time
ht
T

and writeU as a function ofr.
The last term in the sum in equation (39) is of order

2 KN\ 3K
(Kj) eXp<— 2K 2 ) = (KJ) exp<—2> (43)

so that provided

1 3K
j —e — 44
J <% xp( 1 ) (44)
the error introduced by extending the sum to infinity is negligible. For large valués, of
the last equation imposes only a mild restriction jon

Also, since
00 ) -1 )
2J + 1)2 emJ(JJrl)z — Z 2J + 1)2 emJ(JJrl)z (45)
J=0 J=—00

we can writel/(t) as a sum over both positive and negatite

UT)~C Y (2] +1)2e™/VHbs, (46)

J=—o00

In both this section and section 6, we make use of the relationship bet#@erand the
simpler sumS(z), defined by

S(z)= Y €&muine, 47)

J=—00
The tracel{/(r) can be written in terms af(z) and its derivative:
4 dS
Ur)=C < + S(z)) i (48)
i dz

Perhaps the most obvious way to approximate the sum (47) is to replace the sum by
an integral. By using the Poisson summation formula [23], we can find out when this
approximation is valid. The Poisson formula for the sum of a sequéiicgeis

Yo fmy= > f@rh (49)

n=—00 k=—00

where f () is the Fourier transform

fw) = f dr f(r) €. (50)
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Applying this formula to the sun§(z) yields

S@ =272 Y exp<_l4m(1 + 4z + 4k2/z2)) . (51)

k=—00

Thek = 0 term in this sum is the result of replacing the sum by an integral in the definition
of S(z) (equation (47)). Other terms are negligible when

1
—Im->1 (52)
z

where Imw denotes the imaginary part of a complex numher This condition can be
written as

X Lyd—y) (53)
wherez = x + iy, or in terms of the quantities, j, K in equation (41),
1< jJK. (54)

The resulting expression fd#(z) is

i\Y2 iTz
S(z) = <) exp<—> ) (55)
Z 4

Combined with equations (41) and (48), this gives a simple expression for the trace

U(r):
1/2
U ~ (13) g ime/4
1T 1Z
_2C (iKj(j+D\Y? T .
= <+3/2) eXp(—W[“‘ B 2"])- (56)

We have now derived a simple formula (56) for the trace of the quantum evolution
operator, which is valid when the condition (44) holgsand K are large, and the time
is small enough to satisfy equation (54). However, we have no information so far on the
behaviour ofi/(z) for large times.

An interesting feature of the formulae (54) and (56) is that the paramgtars] K,
which describe the size of each spin and the number of spins in the system, appear only
in the combinationkj (j + 1) (the right-hand side of equation (54) being an approximate
form for (Kj(j + 1))/2 when j is large). This means that in the combined classical and
thermodynamic limit, a single parameter

N=Kj(j+1) ~Kj? (57)

measures how far the collective behaviour of the system is removed from the small-scale,
guantum-mechanical laws which govern it. We will see in section 6 that the parameter
appears again as a measure of the complexity of the trajectdiymfat long times.

It is well known that semiclassical approximations for the time evolution of quantum
systems often break down at long times (for an excellent review, see Chatlal\2]), so
we might expect that for large values of the simple formula (56) will cease to be valid.
In the next section, we explore the behaviouiftt) at long times using a renormalization
scheme. We shall find that the long-time behaviour of the trace is extremely complex, with
complexity increasing as we increase the values of the parameterd K.
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6. Long-time behaviour of the model

If we fix the parameterg and K which describe the system, and allow it to evolve with
time r = wt/yh, then the complex number

1 3i
00 () o0

moves along a path in the complex plane which starts (at0) on the imaginary axis and
has a real part which is proportional to the time. Increasing the valu€jof + 1) moves
this path closer to the real axis. Equation (55) gives us the behaviofi¢zoffor the first
part of this path, where < j./K. In this section, we investigate the remaining part of the
path, where the approximation (55) fails.

By repeatedly applying a transformation to the simple st{@) which was defined by
equation (47), we shall examine its behaviour near the real line. Using the relationship (48)
betweenl{(r) and S(z), we shall then be able to draw some conclusions about 40wy
behaves at long times for large values;jodnd K .

A scheme related to the one which we use here has been used by Berry and Goldberg
[7] to examine the properties of a suf (t), similar to S(z), which describes a single
precessing quantum spin. They found that certain properties of the sum depended on
whether the dimensionless time was rational or irrational.

6.1. Jacobian elliptic Theta-functions and the imaginary transformation

The transformation which we shall use is based on the properties of the Jacobian elliptic
Theta-function®3(a|b). The Theta-functions are discussed by Whittaker and Watson [24],
whose notation we use.

The Theta-function is a complex function of two complex variablegnd b. It is
defined by the equation

@3(a|b) — Z ei?'r(bn2+2na) ) (59)

From the definition ofS(z) (equation (47)), we can see that
nZ
S(z) = Og (7‘z). (60)
The property of©s(a|b) which allows us to derive a renormalization map %) is

known asJacobi’'s imaginary transformatiof24]. It is simply the equation

Os(alb) = (—ib)~Y2ex “\ g, (¢ ’ -1 (61)

I3(alb) = (— — )O3 -|— .

3 Plain) 2\ 515

To use this property, we define a function

rer-en (1]

= Y (-l einE, (62)
J=—00
The imaginary transformation (61) implies th&tz) and T (z) are related by the equations
S(z) = (—iz) Y2 ™A T (1)) (63)

and
T(z) = (—iz) Y2d™*%8(1/z). (64)
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The functionsS and 7' share a periodicity in the real part of with period 1. That is,
they obey the equations

S(z+n) =S5 (65)
and
T(z+n)=T() (66)

wheren is any integer. These two equations can be derived using the definitions (47) and
(62), and the identity &" = 1.

The equations (63)—(66) are the results which we shall need to construct the
renormalization scheme.

6.2. The continued-fraction map

With the results of the last section in mind, we define the renormalization map

1
f2) = e m(z) (67)
wherem(z) is an integer, chosen for eaghso thatf(z) lies in the strip
F={z=x+iy:0<x <1 (68)

in the complex plane. The functiofi then mapsl™ onto itself, and can be thought of as
the definition of a discrete-time dynamical system on the phase-gpace

This mapping is useful because, as we can see from equations (63)—(66), the function
S(z) is related to the functioff’ (z) by the transformation — 1/z, and bothS(z) and T (z)
are invariant under the transformatiorn— z + n. In section 6.4, we shall see how we can
use these properties to draw conclusions alfgy.

We refer to f as thecontinued-fraction mapbecause its restriction to the real line is
closely related to the continued-fraction representation of real numbers [25]. Continued
fractions are important in the theory of numbers, and have applications in the theory of
dynamical systems [26] and in numerical analysis [27].

Any real numberr in the range O< x < 1 has a unique representation as a continued
fraction,

1
X = 1 (69)
a; + 1
az +
as + e
where eaclhy; is a positive integer. Following Khinchin [25], we use the notation
1
[Cll, ap, as, .. ] = 1 . (70)
a+ —a
az+
2 az+---

If x is rational, the fraction is finite, and the numbeiis exactly equal to the finite
continued fraction

1
[a1, a2, ..., a,] = 1 . (71)

a +
as +
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However, for an irrational number, the continued fraction is infinite. For example,

1
—=01,2,1,212..]. 72
vl ] (72)
Truncating the fraction after somg yields a rational approximatiop, /g, to x, given by
? = [ao, a1, - .., an]. (73)

This approximation is the best which can be achieved with denomiratgr and successive
approximations converge to [25]:

lim " = x. (74)

n—0o0 qn

The map f can be used to derive the continued-fraction representation for a real
numberx. If

x =lay,az, a3, .. ] (75)
then

fx) =laz,as,...] (76)
and

ap = m(x). (77)

Repeated application of the map gives the integers; which determine the continued
fraction:

aip1 = m(f'(x)). (78)

By repeatedly applying the continued-fraction mgp we define a discrete-time
dynamical system on the intervgD, 1]. The invariant distribution for this map was
discovered by Gauss, but a full treatment of the ergodic properties of the system was
given only recently [28].

6.3. The continued-fraction map in the complex plane

In this paper we are concerned with the properties of the dynamical system defingd by
not on the real line, but in the complex plane. We shall see that as long as we avoid the
real line, the behaviour of is quite simple, and more easily described than the behaviour
on the real line.

We use the symbdl” to denote the sdf with the real line removed. As we saw in the
previous section, the functioi maps the regiol”, defined by equation (68), onto itself.
Clearly, if z is on the real line, so ig'(z) and also all the pre-images such thatf (w) = z.
Hence we can also regartlas a map fronT onto itself.

We partitionI” into a countable set of region¥, : n =0, 1, ...}, defined in terms of
the mapf as follows.

A complex numbect is in g if it is a period-two fixed point of the may’; that is, if

f2(z) =z, or
-1
(1 - ml) iy =2 (79)

Z
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for some pair of non-negative integers, m,. This equation can be rearranged to give a
guadratic inz which has real roots unless; = m, = 0. So ifz is a period-two fixed-point
in I'', we must haven(z) = 0, and hence

1
Re- <1 (80)
z
where Rev denotes the real part of a complex numhberlf we write z in terms of its real

and imaginary parts,

z=x+Iiy (81)
then the condition fog to be inTg is

y2>x(1—x). (82)

The setl’y therefore covers the whole &f apart from the interior of the circle of radiu.%
with centrez = 7 (figure 1).

We now definel’,,, for n > 0, to be the set of points which take exactly: iterations
of the mapf to reachl’y. That is,

T, ={z: f"(z) € To but f"*(z) & I'o}. (83)
Forn > 1, we have
Ty =T (84)

where f~1(A) denotes the pre-image of the skt

Im([z]

Relz]

Figure 1. The regionsl’ and I'p in the complex plane.I’ is the whole strip O< Rez < 1,
including the circle and the shaded region in the diagr&gmis the shaded region only.
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A

Im{z]

Figure 2. The regions’; and Tz in the complex plane. Subsets Bf are numbered,2, .. ..

Figure 2 is a picture of the sef$; andI',. The curve which separatdd from I',
consists of all the pre-images of the circle in figure 1 under the yhafs we can see from
figure 2, the sef"; consists of an infinite sequence of disjoint regions, each corresponding
to a different value ofn(z) in equation (67). We number thesg21 3, ... as in the diagram.
Regionm is mapped into the circle in figure 1 by the function~ 1/7 — m.

Each of the disjoint regions in figure 2 contains an image of the entire sequence of
regions within itself. These sub-regions contain the 3¢t The boundaries of the sets
I'1, Ty, ... form a self-similar pattern in the complex plane, which has detail on increasingly
fine scales as we approache the real axis (figure 3). As we shall see, this detail is related
to small-scale structure in the functidiiz).

The union of all the region$, I'y, ... is the setl”. This means that any complex
numberz which has Re # 0 will reach I’y after a finite number of applications of the
map f.

This analysis of the majp allows us to define a unique continued-fraction representation
for complex numbers i”. If z isin [',,, then f"(z) is in Ty, SO we can write

= f"(2) (85)
wherez is in I'p. Using the definition off (equation (67)), we can invert this equation,
finding

(86)

ai+
a +




Classical and thermodynamic limits of interacting quantum spins 3157

0.4

0.2

~0.2
T

Figure 3. The boundaries of the regioi% in the complex plane.

or, in the notation of equation (71),
Z = [a17a27a37"'1an71/2]‘ (87)

With the convention that is chosen, as above, to be the smallest integer such that
f"(z) € Iy, this equation defines a unique continued-fraction representation for any complex
numberz in I'.

We can think of the integefgiy, ay, . . ., a,} as the address of the poinin the complex
plane. z lies inside the region numbered in figure 2. Inside this region is an infinite
sequence of subregions, andies inside thez,th of these. We continue, specifying smaller
regions of the complex plane, until we reach the last non-zeroThis specifies which
of an infinite sequence of pre-images B§, all contained within the region defined by
ai, az, ...,aj_1, containsz. Figure 4 shows a set of these pre-images. The locatian of
within one of these pre-images is specified oy

As the timer increases, and follows its simple straight-line trajectory through the
complex plane according to equation (41), the complex nurdbllows a much more
complicated path. When is small,z is in 'y and soz = z. However, whery reaches the
boundary ofl’'y and crosses intd';, the two complex numbers part agdoegins crossing
and re-crossing the sé&l. As z moves into the parts of the complex plane which have
finely detailed structure in figure 3, must crosd’g more and more frequently.

6.4. Implications for the functiof(z)

We shall now use the knowledge which we have collected about the dynamics of thg map
to examine the complex functiafiz) defined by equation (47). Equations (63)—(66), which
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[

Figure 4. An infinite set of pre-images dfp (regions numbered,2, 3, ...). In region 1,5(z)
has square-root singularities at the points A and B, and an essential singularity at C.

describe the properties 6f(z) and the related functiofi (z) under some transformations in
the complex plane, will lead us to an equation which shows how the fun§tionchanges
whenz is repeatedly transformed by the mg@p We use the notation

z =A@ (88)

to simplify our equations.
The functionT (z) transforms in a particularly simple way under an even number of
repeated applications of the mgp From equations (63)—(66), we obtain

T(z) = (zz1) Y2 exp(lz B - zl]) T(z2). (89)

Sincez andz; are related by the magp, we have simply

im(z) 1/2
T(z) = < ) T (z2). (90)
721
If we apply the transformation repeatedly, we obtain, for exgen
T(z) = i[m(z)+m(ZZ)+"'+m(‘7’”’2)1/Z(Zlez .. 'anl)_l/zT(Zn)- (91)

By combining equations (63) and (64) with the last equation, we find a similar expression
for S(z), also valid whem: is even:

S(z) = i[m<u)+m<z3>+~~+m<zn3>]/2exp<iz [Z ! ZD S(zn) - (92)
n—1

To put this equation in its final form, we take the complex modulus, and neglect the
appearance of in the exponent, since we shall be interested in the limiting behaviour as
the imaginary part ot becomes small. We then writg_; in terms ofz,, obtaining

1S(z)] =~ le /48 (z,)] . (93)

lzz1+ - zp—1|Y/?
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For values ofz in one of the set§”,, wherem is even, we can use this equation as it
stands, since in this cage= z,. We re-write (93) as

S ~ _ —  __R(Z 94

[S(z)] 2212y |12 @ (94)
where

REZ) = |e"/*8(3)| = @V S(F + i) (95)
andz = x¥ +iy. We note that in this casglies in the upper half of the regiohp; that is,
y > 0.

Whenz lies in a setl",, for which m is odd, we sei = m + 1, so that
- 1
and
1 1
S ~ R | = 97
| (Z)| |ZZ1"'Zn71Zn|l/2 <Z> ( )

where now ¥z lies in the upper half of’.

Equations (94) and (97) give us the modulus of the funci¢én), for anyz in I, in
terms of the functiork(z) evaluated at points in the upper halfi6f. Before we can draw
conclusions about the behaviour &fz), we must first look atR(z).

In section 5, we derived equation (55), which is an approximate expressio$(for
valid wheny(1—y) > x2 . This gives us the approximate behaviourRyt) in the corner
of 'y nearz = 0: in this region

R(z) ~ (98)

|Z|1/2'

The approximation (55) is also valid whan< 0. Since, from equation (655(z + 1) =
S(z), the behaviour ofR(z) close toz = 1 is similar to that near = 0. In the corner of
I'g close toz = 1, we therefore have
1
|z — 12"
It is clear from the definition o8 (z) (equation (47)) that, for large values pfall terms
in the sum apart from those with(J + 1) = 0 are exponentially small. For large values
of y, we therefore have(z) ~ 2, and

R(z) ~ 2&"/2 (100)

Figure 5 is a plot of the functio®R(z). We can see that the three equations (98)—(100)
capture, at least qualitatively, the behaviour of the function in the paftgofbove the
real axis. Away from the two singularities at= 0 andz = 1, R(z) varies smoothly,
being well approximated by equation (100). The only significant featureB(of in the
region of interest are the three singularities described by equations (98)—(100): square-root
singularities att = 0 and atz = 1, and an essential singularity at infinity.

We are now ready to draw some conclusions about the behaviour of the fus¢tipn
near the real line. If the sdf,, containingz has an even value of, then we can use
equation (94). As we allow to vary within the setl’,,, most of the variation inS(z)
will come from changes ig. Therefore within each pre-image bf in figure 4, there are
three singularities of(z): one for each of the three singularities R(z). For example,
in region 1, there are square-root singularities at the paintand B, and an essential
singularity at the poinC.

R(z) =~ (99)
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Figure 5. The functionR(z), evaluated in the part dfy above the real axis. The form of the
function is dominated by the three singularitiesat 0, z = 1 andz = oco.

Figure 6. The modulus of the functiof(z).

Whenm is odd, we must use equation (97). The situation is very similar. The only
difference is that we must usR(1/z) instead ofR(z). Hence in this case we have square-
root singularities at the point8 and C, and an essential singularity at

We now have a picture of the functiofi(z) throughout the upper half df’. In the
region

P Lyd—y) (101)

S(z) varies smoothly according to equation (55), with the square-root singularity=a0
dominating the function. As we increase thecoordinate, we move away from this region
where S(z) is simple and smooth, into areas of fine detail. Inside each pre-imadg, of
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Figure 7. U(r) as a function oft: (a) shows the real part éf(z) as a function of for j = 10,
K = 10; (b) shows the trajectory df{(r) in the complex plane for the same valuesjadnd K ;
(c) and @) show the same information for the valugs= 50, K = 100.

there are three singularities which influence the behaviow§(gf, and it is only when we
near these singularities that the function varies rapidly. All the singularities are on the real
line, and as we move closer to the real line, the pattern formed by thd sétscomes
more complex, and the behaviour §fz) becomes more complex. Figure 6 is a plot of the
modulus ofS(z), which illustrates some of this complexity.

6.5. The trace of the quantum evolution operator at long times

Now that we have a qualitative picture of the behavious¢f), we can see how the trace
of the quantum evolution operatdr(t), changes with increasing dimensionless time
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Figure 7. Continued.

The trace is related to the derivative 8fz) by equation (48). As we saw in section 5, at
times less than a critical time. ~ j,/K, or in terms of the real time,

- IVK

yh
an approximation gives a simple expression (56) #tr). As S(z) varies in a more
complicated way for larger values of the behaviour of/(r) for large values ofr is
similarly complicated. As we can see from equation (41), the imaginary part isf
inversely proportional tg (j + 1)K, whereK is the number of spins andis the angular
momentum of each spin. Therefore increasing the valug af of K moves the trajectory
of z (equation (41)) closer to the real axis, leading to more complex behaviofiz pfand
also oftd(7).

te (102)
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Figure 7 shows how the trace 6f varies witht for two different values ofi and K.

These plots were obtained by summing the series (39) directly. We can clearly see the part
of the trajectory where « j./K and the time dependence is simple. For large values

of z, U(z) follows a more complicated path in the complex plane. For valuesaifforder

Jj+/K, we have regular oscillations which stem from the- +1 terms in equation (51).

The functionl{(r), the trace of the quantum-mechanical evolution operator, does not
give us a complete picture of the time dependence of a quantum system. However, since it
is the sum of the time dependences of all the eigenstates, it does give an indication of the
way typical quantum-mechanical quantities evolve with time.

7. Conclusion

For the model system which we have studied, there are two very different regimes of time
dependence for the trace of the evolution operator. For ‘short’ times, the time dependence
is simple, but for longer times it is much more complicated.

This breakdown of a simple approximation at long times is behaviour which we expect
from a semiclassical limit. What is more interesting is the way in which this situation
changes when we vary, the size of each spin, ankl, the number of spins. The time
at which the simple approximation breaks down (equation (102)) grows Kithnd j,
depending on the parametdr= K j?. The parameteN also appears in the approximation
(56) for U(r) at short times, and as a measure of the complexity of a trajectoby(of
at long times. SavV is a single parameter which controls the combined thermodynamic—
classical limit.

As we saw in section 1, we expect chaos to shorten the time of validity of the
semiclassical approximation so that the time when the approximation breaks down is
proportional to the logarithm of /&. The algebraic dependence of the critical time
(equation (102) ok and onj and K is therefore a sign that the underlying classical
dynamics of our system is not strongly chaotic. This is not a surprise, given the simple
Hamiltonian (10).

The results of this paper are a reminder that the semiclassical limit of quantum
mechanics, although it provides a simplifying approximation for some calculations, is not
uniformly simple or easy to characterize. At long times the semiclassical limit is irregular
and complex. The question which motivated the research presented here was the following:
does increasing the size of a system diminish this complexity, leading to a simple and well
behaved combined thermodynamic—classical limit? If this were so, it would suggest that
the difficulties associated with the classical limit in small systems are not as important as
they seem: they are smoothed out when we move to a macroscopic scale. But, at least in
the case of the spin system studied here, the limit of large system size does not make the
situation more straightforward. Rather, increasing the size of the system reinforces the effect
of the semiclassical limit, generating simplicity at short times but adding to the long-time
complexity. Further work is needed to determine whether this is true more generally.
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Appendix. Convergence of degeneracies to a Gaussian

This appendix addresses the question of the convergence of the degeneracies in the spin
model to a Gaussian approximation for large valueg ahd K.
Given the distribution

oy 1 Im| < j A1)
o Im| > j

we discuss the behaviour for large K of the multiple convolutionnf((m), defined
recursively by
j

nfql(m) = Z n{(ml)nQ (m —mq). (A2)

mi=—j

It is a consequence of the central limit theorem (Feller 1968) that for IHr,ge;( converges
to a Gaussian:
i 1 2 2
J . K —m? /28
where the factof2; +1)X derives from the fact that the distribution (A1) is not normalized,
and wheresS? is the variance of the multiple convolution, given by

§2 = Ko? (A4)

o? being the variance of the distributim{(m). The quantityo? is easily calculated from
the formula for the sum of the squares of the firshtegers (see, for example, Arfken 1985,
p 336). We thus obtain

_KjiG+D
=3
The convergence of the multiple convolution to a Gaussian is not in doubt, since the
distributionn] has finite moments and satisfies the conditions for the central limit theorem.
However, we shall use the Gaussian as an approximation in the region ofjlange K,

and so some idea of how the convergence dependsismecessary.
We define a discrete Fourier transform

52 (A5)

foy=) fomye™ (A6)
with the inverse
1 /. . _—
f(m) = —f dx f(x)e"r. (A7)
2 J_,
A convolution theorem holds, and so, since
y Sin(j + )x
— 277 A
n1(x) sinx/2 (A8)

we have the following expression for the multiple convolutidp(@:

K
- 1 7, o |sinG + Dx
J _ imx 2
nyg(m) = P _ﬂdx e |:Sinx/2 :| . (A9)
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Figure Al. The functiony = Sms(lg/zz)x. For large values of, the central peak, with width of

order 2r/j, dominates the integral. The graph plotted here is for the value8.

From a sketch of the function in square brackets in the last equation (figure 8), we can see
that for largej, the dominant contribution to the integral comes from the small region of
width 2r/j aroundx = 0.

For comparison, consider the continuous version of the discrete problem above. We
take the multiple continuous convolutiorj of the functionnf defined by equation (Al).
That is,

v{(H(m) = % /_00 dx n{(x)n{( (m—x). (A10)

Using continuous Fourier transforms and the convolution theorem, we can easily derive a
continuous version of equation (A9):

joo e [singx ¥
vK(m)_Z/_Oodxe |:x/2:| .
Again, for largej the dominant contribution to the integral comes from a small region of
width 27/j aroundx = 0.

For the continuous version of the problem, a changg¢ amounts to a change of scale
in m. Hence the convergence of the continuous multiple convolution to a Gaussian must
be uniform in j, in the sense that the fractional error in the Gaussian approximation is
independent ofj.

We now compare the Fourier integrals for the discrete and continuous versions of the
problem, equations (A9) and (All). For largewe can replacg + % with j, and, in the
small interval which dominates the integrals, sjt2 by x/2. Hence the difference between
the two equations becomes small for largje This allows us to extend the conclusion of
the previous paragraph to the discrete version of the problem. That is, the convergence of
the discrete multiple convolution to a Gaussian is uniformy.in

(A11)
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