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Classical and thermodynamic limits in a system of
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Cavendish Laboratory, Cambridge CB3 0HE, UK

Received 12 September 1995

Abstract. We study a model system composed of interacting quantum spins, with every spin
coupled to every other, in the limit where the number of spinsK and the angular momentumj
of each spin are both large, aiming to explore the effect of large system size on the breakdown of
the classical limit of quantum mechanics. We obtain the exact spectrum of the Hamiltonian, and
hence the traceU(τ ) of the quantum-mechanical time-evolution operator. We examine the time
dependence ofU(τ ), finding a simple approximation which is valid whenj andK are large.
At a time proportional toj

√
K, this approximation breaks down, and the long-time behaviour

is extremely complex. We use a renormalization scheme to investigate this complexity. The
scheme is based upon a generalization of the Gauss continued-fraction map to the complex
plane.

1. Introduction

Both the classical and the thermodynamic limits are important to our understanding of the
world in terms of fundamental physical laws. We can regard most everyday objects as
practically infinite on an atomic scale, and this justifies the use of the thermodynamic limit,
where the size of a system is taken to be infinite. Similarly, the Planck constant is so small
that quantum effects are completely negligible in everyday life. This is the reason that the
existence of quantum mechanics was not suspected until the twentieth century.

Since these limiting cases of the fundamental laws are so commonly used and
so important to physics, it is unfortunate that the limits involved are not simple or
mathematically well behaved. Berry [1] has discussed this problem in general. In this paper,
we investigate a simple quantum system where both the classical and the thermodynamic
limits can be explored, hoping to shed some light upon the combined effect of the two
limits. Our main conclusion will be that at long times, the classical and thermodynamic
limits lead to extremely complex behaviour. This is in contrast to the simplicity of the time
dependence at short times in these limits.

Since in both classical and thermodynamic limits, the quantum density of states becomes
large, we might expect to find analogies between the two limits. For example, it is well
known that approximations which are valid for large quantum numbers, and also those
which are valid for large system size, often break down at long times.

In the field of research known as ‘quantum chaology’, this observation resolves a
paradox. Consider the quantum-mechanical version of a chaotic classical dynamical system.
Since a finite quantum system has a purely discrete spectrum, its time dependence must be
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quasiperiodic, and therefore not chaotic. But the Ehrenfest correspondence theorem claims
that in the classical limit, the quantum mechanics of the system must approach the chaotic
classical behaviour.

This apparent paradox is resolved by the observation that there are two time-scales
involved. For short times, quantum-mechanical wavepackets follow classical trajectories,
which may be chaotic. However, over large time-scales, the classical limit breaks down, the
quantum-mechanical nature of the system becomes apparent and the motion is quasiperiodic.
This subject was reviewed by Chirikovet al [2]. More recently, detailed studies [3] of the
quantum time evolution of classically chaotic systems have suggested that, in general, the
semiclassical approximation breaks down at some critical time

τh̄ ∼ 1

λ
log

(
I

h̄

)
(1)

whereλ is the largest Lyapounov exponent andI is proportional to the size of the phase
space. A simple argument for this result is as follows [3]. A wavepacket representing
a quantum particle cannot be localized on a scale smaller than ¯h (or perhaps ¯h1/2—this
makes no difference to the argument), because of the uncertainty principle. For a chaotic
system, trajectories diverge exponentially with time as eλt . Hence after timet , the extent of
a wavepacket is of the order of ¯h eλt . The semiclassical approximation breaks down when
the wavepacket has spread out so that its size is of the order of the sizeI of the phase
space. Hence we have a critical time as in equation (1).

For non-chaotic systems, this argument must be modified because trajectories diverge
with time, not exponentially, but linearly. In this case we would expect a time-scale

τh̄ ∼ I

h̄
. (2)

The results which we shall derive for our simple model system will be closer to equation (2)
than to equation (1), suggesting that the classical version of the system is not chaotic.

In non-equilibrium statistical mechanics, the thermodynamic limit is often invoked to
derive irreversible behaviour such as the approach to equilibrium. The approximations used
here also break down at long times. Two examples are the harmonic-oscillator assembly
of Mazur and Montroll [4], and the rigorous derivation of the Boltzmann equation for a
hard-sphere gas, first given by Lanford [5], and discussed by Spohn [6].

In this paper, we investigate a model system composed of quantum spins. We calculate
the trace of the quantum-mechanical evolution operator for large values of the number of
spinsK and the magnitude of each spinj . The trace is a typical time-dependent quantity
because it contains the time dependences of all the energy eigenstates of the system. We
find that a simple approximation is valid in the limit where bothj andK are large, but
that this approximation breaks down at large times, just as we would expect a semiclassical
approximation to break down. The time at which the approximation ceases to be valid
is proportional toj

√
K. For times longer than this, the time dependence is extremely

complicated.
In the next section, we briefly review some earlier work on the properties of classical

and thermodynamic limits in quantum spin systems. In sections 3–5, we introduce the spin
system which is the subject of the present paper, obtain the spectrum of the Hamiltonian, and
find the trace of the evolution operator. A simple approximation for the time dependence
of the trace at short times is derived.

In section 6, we study the long-time behaviour of the trace. We use a renormalization
scheme which depends upon some properties of elliptic functions and a generalization of
Gauss’s continued-fraction mapping. A related scheme was used by Berry and Goldberg
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[7] to study a single precessing quantum spin. We find that the long-time behaviour of the
trace is complex, with complexity growing as we increasej andK.

2. Previous work on quantum spin systems

Theoretical work on quantum-mechanical spin systems has been concentrated in two areas:
the thermodynamic limit where the number of spins is large, and the classical limit where
the magnitude of each spin is large. A review of the nature of integrability in both cases
has been given by M̈uller [8].

Fisher [9] was the first to consider the classical limit of a quantum-mechanical spin
chain. He derived the partition function for a linear Heisenberg model with isotropic nearest-
neighbour coupling in the classical case, and compared the thermodynamics of the model
with that of quantum spin chains. Millard and Leff [10] put this work on a rigorous base
with a proof that for a Heisenberg model with any coupling, the classical limit of the
quantum canonical partition function is the classical partition function.

More recently, the study of ‘quantum chaos’ has revived interest in the classical limit,
and a number of studies of small clusters of quantum spins in the classical limit have been
made [11–13]. These studies have mostly focused on the distribution of eigenvalues of
the Hamiltonian. However, Berry and Goldberg [7] have found surprisingly complex time
dependence in the trace of the evolution operator for a single precessing spin.

Exactly-solved models of large quantum systems have generally been restricted to the
case of spin-12 particles. Examples are the isotropic linear Heisenberg model, which was
solved by Bethe [14] with his ansatz, and theXY model of Liebet al [15]. Neither the
Bethe ansatz nor the transformation to a representation in terms of fermion operators which
is used for theXY model generalizes to spins of magnitude greater than1

2. Reprints of
these papers and many others are included in a fascinating collection compiled by Mattis
[16].

We should also mention the work of Berman and Zaslavsky on atoms interacting with
a radiation field [3]. Both integrable and non-integrable (chaotic) versions of this system
were considered. Numerical studies showed that the dependence of the time-scaleτh̄ on h̄
was logarithmic, as in equation (1) in the non-integrable case, and linear, as in equation (2),
when the system was integrable.

As far as the author knows, no analytical results have been published on the properties
of large systems in the classical limit. The present work is intended as a beginning to the
study of this problem, which has obvious physical importance.

3. The model

The model system which is the subject of this paper consists ofK quantum spins, each
with angular momentum quantum numberj , interacting via the Hamiltonian

H = −γ̄
∑
i,j

si · sj . (3)

We can picture this Hamiltonian as representing a cluster of spins, each spin interacting
equally with every other spin in the cluster. A less physical interpretation is to think of the
spins as being placed on a network which is a complete graph; that is, where every site is
connected to every other site.

The equilibrium statistical mechanics of physical systems placed on a complete graph
has been the subject of some interest. A model proposed by Tóth [17], and investigated
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first by Tóth and then by Penrose [18], consisting of a lattice gas of bosons with hard-core
repulsions, was the first interacting system where Bose condensation was demonstrated to
occur.

The model Hamiltonian (3) arises when we apply the mean-field approximation to a
Heisenberg model of interacting spins with some local interactionJij . The Heisenberg
Hamiltonian is

HH = −
∑
i 6=j

Jijsi · sj . (4)

In the mean-field approximation, we replace one of the spin operatorssj in each product
si · sj with s̄, the average over the whole system:

s̄ = 1

K

K∑
l=1

sl . (5)

Assuming that the interactionJij is translationally invariant, we then obtain the Hamiltonian

−
(

1

K

∑
j

Jij

) ∑
i,l

si · sj (6)

which is just the model Hamiltonian (3), with

γ̄ = 1

K

∑
j

Jij . (7)

In the present paper, we shall be investigating the behaviour of this model in the limits
where the number of spins,K, and the magnitude of each spin,j , become large. It is
therefore important to decide upon the scaling behaviour of the interactionγ̄ as we increase
the parametersK andj . We takeγ̄ to be inversely proportional to the system sizeK, as in
equation (7), so that the total energy scales linearly withK. As we take the semiclassical
limit j → ∞, we hold the spin–spin interaction energy, which is of orderj2γ̄ , constant.
The interaction parameter̄γ will therefore be written as

γ̄ = γ

Kj (j + 1)
(8)

whereγ is a coupling constant independent ofK andj .

4. The spectrum of the Hamiltonian

We shall not attempt to find the energy eigenstates of the Hamiltonian (3) in terms of the
individual spin states. We consider only the eigenvaluesEJ and their degeneracies. We
shall derive approximate expressions for the degeneracies, which are valid in the limit where
j andK are large. This information will be used to investigate the behaviour of the trace
of the quantum time-evolution operator, in the combined limitj,K → ∞.

4.1. Eigenvalues

We shall be able to find the eigenvalues of the model Hamiltonian (3) without difficulty
because the Hamiltonian is closely related to the total angular momentum of the system.
Since the total angular momentum operator is

J =
∑
i

si (9)
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we have simply

H = −γ̄J2 . (10)

The eigenvalues ofH are therefore

EJ = −J (J + 1)γ̄ h̄2

= −J (J + 1)γ h̄2

Kj(j + 1)
. (11)

For simplicity, we assume thatj is an integer, so thatJ also ranges over integer values.
The range ofJ is

0 6 J 6 Kj . (12)

To determine the energy spectrum ofH , we need only find the degeneracyNJ of each
eigenvalueEJ .

4.2. Degeneracies

We define the total spin quantum numbersJ andM by the eigenvalue equations

J2|J,M〉 = h̄2J (J + 1)|J,M〉 (13)

and

Jz|J,M〉 = h̄M|J,M〉 . (14)

The components(Jx, Jy, Jz) of the operatorJ have all the well known [19] properties
of angular momentum operators. In particular, by acting upon a quantum state|J,M〉 with
the ladder operators

J± = Jx ± iJy (15)

we can construct a family of(2J +1) states, sharing the sameJ , but each having a different
integer value ofM in the range−J 6 M 6 J . This means that the degeneracy of the
quantum numberJ must be a multiple of(2J + 1). We write

NJ = (2J + 1)N̄J . (16)

The degeneracy will depend upon the system sizeK and the magnitudej of the spins.
We therefore use the notation

N̄J = N̄J (j,K) . (17)

Similarly, each eigenvalue ofJz has some degeneracynM(j,K).
Because every family of(2J + 1) states has one member|J,M〉 with each value ofM

such that|M| 6 J , the relationship between̄NJ , the number of families, andnM is

nM(j,K) =
∑
J>|M|

N̄J (j,K) . (18)

Alternatively, we may write

N̄J (j,K) = nJ (j,K)− nJ+1(j,K) . (19)

In order to find the degeneraciesNJ of the energy eigenvalues, we first findnM using
a recursion relation, and then derive theNJ using equations (16) and (19).

The recursion relation fornM follows from some elementary facts about the addition of
angular momentum in quantum mechanics.
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Suppose that two systems with angular momentum operatorsJ (1) andJ (2) are combined,
so that the operator for total angular momentum is

J = J (1) + J (2) . (20)

The quantum numberM for the z-component of the total angular momentum is the sum of
the quantum numbers for the individual systems:

M = M(1) +M(2) . (21)

Hence the degeneracy for this quantum numberM is given by

nM =
∑

M1+M2=M
n
(1)
M1
n
(2)
M2
. (22)

For our system ofK spins, each with angular momentumj , we therefore have

nM(j,K + 1) =
j∑

m=−j
nm(j, 1)n(M−m)(j,K) . (23)

This is the recursion relation which we need to derive the degeneracies. The values of
nM(j,K) for K = 1 are simply

nM(j, 1) =
{

1 for |M| 6 j

0 otherwise .
(24)

There is a close analogy between this problem and one from the theory of probability.
Consider the distribution over the integers given by

p(n) =
{

1/(2j + 1) for |n| 6 j

0 otherwise .
(25)

The distributionPK(x) of the random variable

xK =
K∑
i=1

ni (26)

which is the sum ofK independent integers taken from the distributionp(n), obeys a
recursion relation similar to (23):

PK+1(x) =
j∑

m=−j
p(m)PK(x −m) . (27)

For largeK, the central limit theorem [20] tells us thatPK is well approximated by a
Gaussian:

PK(x) ' 1

(2πS2)1/2
exp

(
− x2

2S2

)
. (28)

This approximation is discussed in the appendix, where we show that

S2 = Kj(j + 1)

3
(29)

so that

nM(j,K) ' (2j + 1)K

(2πS2)1/2
exp

(
− x2

2S2

)
(30)
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for large j andK. In the appendix, we show that the convergence of the degeneracies to
this approximation is uniform inj for large values ofj andK. We can therefore use this
approximation with confidence in the region wherej andK are large.

The next step is to find̄NJ (j,K) using equation (19). We obtain

N̄J (j,K) ' (2j + 1)K

(2πS2)1/2
exp

(
−J (J + 1)

2S2

) [
exp

(
− J

2S2

)
− exp

(
−J + 1

2S2

)]
. (31)

Expanding the quantity in square brackets as a power series gives

N̄J (j,K) ' (2j + 1)K

2S3(2π)1/2
(2J + 1) exp

(
−J (J + 1)

2S2

) [
1 + O

(
J

S2

)]
. (32)

Since|J | 6 Kj , andS2 is given by equation (29),

J

S2
. jK

Kj2
= 1

j
(33)

so that whenj is large, we can neglect the terms of orderJ/S2 in (32). We thus arrive at
our final expression for̄N , valid when bothj andK are large:

N̄J (j,K) ' (2j + 1)K

2(2π)1/2

(
3

Kj(j + 1)

)3/2

(2J + 1) exp

(
− 3J (J + 1)

2Kj(j + 1)

)
. (34)

5. The trace of the quantum evolution operator

The quantum-mechanical time-evolution operatorUt is defined as follows. If we have a
time-dependent quantum stateψ(t), then

Utψ(s) = ψ(s + t) . (35)

That is,Ut carries states towards the future by a timet . It can be written in terms of the
eigenstates|en〉 and eigenvaluesEn of the Hamiltonian:

Ut =
∑
n

|en〉〈en| e−iEnt/h̄ . (36)

The traceU(t) of this operator gives a scalar, time-dependent quantity which is the simplest
characterization of the quantum dynamics of a system:

U(t) = TrUt =
∑
n

e−iEnt/h̄ . (37)

The trace of the evolution operator, and its Fourier transform, the density of states, have
often been used to study ‘quantum chaos’. A large amount of theoretical work has been
devoted to deriving semiclassical formulae, such as the Gutzwiller trace formula, for the
density of states [21, 22]. Berry and Goldberg [7] have usedU(t) as a simple characterization
of the time dependence of a system, in the same way that it is used here.

For the interacting spin system which we consider here,U(t) can be written in terms
of the energiesEJ and their degeneraciesNJ = (2J + 1)N̄J :

U(t) =
jK∑
J=0

(2J + 1)N̄J (j,K)e−iEJ t/h̄ . (38)

From equations (11) and (34), we have

U(t) ' 2C
jK∑
J=0

(2J + 1)2 eiπJ (J+1)z (39)
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whereC is the time-independent quantity

C = (2j + 1)K

(32π)1/2

(
3

Kj(j + 1)

)3/2

(40)

andz is a complex number,

z = 1

Kj(j + 1)

(
τ + 3i

2

)
. (41)

To simplify our equations, we use the dimensionless time

τ = γ h̄t

π
(42)

and writeU as a function ofτ .
The last term in the sum in equation (39) is of order

(Kj)2 exp

(
−3(Kj)2

2Kj2

)
= (Kj)2 exp

(
−3K

2

)
(43)

so that provided

j � 1

K
exp

(
3K

4

)
(44)

the error introduced by extending the sum to infinity is negligible. For large values ofK,
the last equation imposes only a mild restriction onj .

Also, since
∞∑
J=0

(2J + 1)2 eiπJ (J+1)z =
−1∑

J=−∞
(2J + 1)2 eiπJ (J+1)z (45)

we can writeU(τ ) as a sum over both positive and negativeJ :

U(τ ) ' C

∞∑
J=−∞

(2J + 1)2 eiπJ (J+1)z . (46)

In both this section and section 6, we make use of the relationship betweenU(τ ) and the
simpler sumS(z), defined by

S(z) =
∞∑

J=−∞
eiπJ (J+1)z . (47)

The traceU(τ ) can be written in terms ofS(z) and its derivative:

U(τ ) = C

(
4

iπ

dS

dz
+ S(z)

)
. (48)

Perhaps the most obvious way to approximate the sum (47) is to replace the sum by
an integral. By using the Poisson summation formula [23], we can find out when this
approximation is valid. The Poisson formula for the sum of a sequencef (n) is

∞∑
n=−∞

f (n) =
∞∑

k=−∞
f̃ (2πk) (49)

wheref̃ (ω) is the Fourier transform

f̃ (ω) =
∫ ∞

−∞
dt f (t)eiωt . (50)
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Applying this formula to the sumS(z) yields

S(z) = (iz)−1/2
∞∑

k=−∞
exp

(−iπz

4
(1 + 4k/z + 4k2/z2)

)
. (51)

Thek = 0 term in this sum is the result of replacing the sum by an integral in the definition
of S(z) (equation (47)). Other terms are negligible when

−Im
1

z
� 1 (52)

where Imw denotes the imaginary part of a complex numberw. This condition can be
written as

x2 � y(1 − y) (53)

wherez = x + iy, or in terms of the quantitiesτ , j , K in equation (41),

τ . j
√
K . (54)

The resulting expression forS(z) is

S(z) =
(

i

z

)1/2

exp

(
− iπz

4

)
. (55)

Combined with equations (41) and (48), this gives a simple expression for the trace
U(τ ):

U(τ ) ' 2C

iπ

(
1

iz3

)1/2

e−iπz/4

= 2C

iπ

(
iKj(j + 1)

τ + 3i/2

)3/2

exp

(
− π

8Kj(j + 1)
[3 − 2iτ ]

)
. (56)

We have now derived a simple formula (56) for the trace of the quantum evolution
operator, which is valid when the condition (44) holds,j andK are large, and the timeτ
is small enough to satisfy equation (54). However, we have no information so far on the
behaviour ofU(τ ) for large times.

An interesting feature of the formulae (54) and (56) is that the parametersj andK,
which describe the size of each spin and the number of spins in the system, appear only
in the combinationKj(j + 1) (the right-hand side of equation (54) being an approximate
form for (Kj (j + 1))1/2 when j is large). This means that in the combined classical and
thermodynamic limit, a single parameter

N = Kj(j + 1) ' Kj2 (57)

measures how far the collective behaviour of the system is removed from the small-scale,
quantum-mechanical laws which govern it. We will see in section 6 that the parameterN

appears again as a measure of the complexity of the trajectory ofU(τ ) at long times.
It is well known that semiclassical approximations for the time evolution of quantum

systems often break down at long times (for an excellent review, see Chirikovet al [2]), so
we might expect that for large values ofτ , the simple formula (56) will cease to be valid.
In the next section, we explore the behaviour ofU(τ ) at long times using a renormalization
scheme. We shall find that the long-time behaviour of the trace is extremely complex, with
complexity increasing as we increase the values of the parametersj andK.
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6. Long-time behaviour of the model

If we fix the parametersj andK which describe the system, and allow it to evolve with
time t = πτ/γ h̄, then the complex number

z = 1

Kj(j + 1)

(
τ + 3i

2

)
(58)

moves along a path in the complex plane which starts (atτ = 0) on the imaginary axis and
has a real part which is proportional to the time. Increasing the value ofKj(j + 1) moves
this path closer to the real axis. Equation (55) gives us the behaviour ofS(z) for the first
part of this path, whereτ . j

√
K. In this section, we investigate the remaining part of the

path, where the approximation (55) fails.
By repeatedly applying a transformation to the simple sumS(z) which was defined by

equation (47), we shall examine its behaviour near the real line. Using the relationship (48)
betweenU(τ ) andS(z), we shall then be able to draw some conclusions about howU(τ )
behaves at long times for large values ofj andK.

A scheme related to the one which we use here has been used by Berry and Goldberg
[7] to examine the properties of a sumSL(τ), similar to S(z), which describes a single
precessing quantum spin. They found that certain properties of the sum depended on
whether the dimensionless time was rational or irrational.

6.1. Jacobian elliptic Theta-functions and the imaginary transformation

The transformation which we shall use is based on the properties of the Jacobian elliptic
Theta-function23(a|b). The Theta-functions are discussed by Whittaker and Watson [24],
whose notation we use.

The Theta-function is a complex function of two complex variables,a and b. It is
defined by the equation

23(a|b) =
∞∑

−∞
eiπ(bn2+2na) . (59)

From the definition ofS(z) (equation (47)), we can see that

S(z) = 23

(πz
2

∣∣∣z) . (60)

The property of23(a|b) which allows us to derive a renormalization map forS(z) is
known asJacobi’s imaginary transformation[24]. It is simply the equation

23(a|b) = (−ib)−1/2 exp

(
a2

π ib

)
23

(
a

b

∣∣∣−1

b

)
. (61)

To use this property, we define a function

T (z) = 23

(π
2

∣∣∣ − z
)

=
∞∑

J=−∞
(−1)J e−iπJ 2z . (62)

The imaginary transformation (61) implies thatS(z) andT (z) are related by the equations

S(z) = (−iz)−1/2e−iπz/4T (1/z) (63)

and

T (z) = (−iz)−1/2 ei π/4zS(1/z) . (64)
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The functionsS andT share a periodicity in the real part ofz, with period 1. That is,
they obey the equations

S(z + n) = S(z) (65)

and

T (z + n) = T (z) (66)

wheren is any integer. These two equations can be derived using the definitions (47) and
(62), and the identity e2inπ = 1.

The equations (63)–(66) are the results which we shall need to construct the
renormalization scheme.

6.2. The continued-fraction map

With the results of the last section in mind, we define the renormalization map

f (z) = 1

z
−m(z) (67)

wherem(z) is an integer, chosen for eachz so thatf (z) lies in the strip

0 = {z = x + iy : 0< x 6 1} (68)

in the complex plane. The functionf then maps0 onto itself, and can be thought of as
the definition of a discrete-time dynamical system on the phase-space0.

This mapping is useful because, as we can see from equations (63)–(66), the function
S(z) is related to the functionT (z) by the transformationz → 1/z, and bothS(z) andT (z)
are invariant under the transformationz → z + n. In section 6.4, we shall see how we can
use these properties to draw conclusions aboutS(z).

We refer tof as thecontinued-fraction map, because its restriction to the real line is
closely related to the continued-fraction representation of real numbers [25]. Continued
fractions are important in the theory of numbers, and have applications in the theory of
dynamical systems [26] and in numerical analysis [27].

Any real numberx in the range 0< x 6 1 has a unique representation as a continued
fraction,

x = 1

a1 + 1

a2 + 1

a3 + · · ·

(69)

where eachai is a positive integer. Following Khinchin [25], we use the notation

[a1, a2, a3, . . .] = 1

a1 + 1

a2 + 1

a3 + · · ·

. (70)

If x is rational, the fraction is finite, and the numberx is exactly equal to the finite
continued fraction

[a1, a2, . . . , an] = 1

a1 + 1

a2 + 1

. . .

1
an

. (71)
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However, for an irrational numberx, the continued fraction is infinite. For example,

1√
3

= [1, 2, 1, 2, 1, 2, . . .] . (72)

Truncating the fraction after somean yields a rational approximationpn/qn to x, given by

pn

qn
= [a0, a1, . . . , an] . (73)

This approximation is the best which can be achieved with denominator6 qn, and successive
approximations converge tox [25]:

lim
n→∞

pn

qn
= x . (74)

The mapf can be used to derive the continued-fraction representation for a real
numberx. If

x = [a1, a2, a3, . . .] (75)

then

f (x) = [a2, a3, . . .] (76)

and

a1 = m(x) . (77)

Repeated application of the mapf gives the integersai which determine the continued
fraction:

ai+1 = m(f i(x)) . (78)

By repeatedly applying the continued-fraction mapf , we define a discrete-time
dynamical system on the interval(0, 1]. The invariant distribution for this map was
discovered by Gauss, but a full treatment of the ergodic properties of the system was
given only recently [28].

6.3. The continued-fraction map in the complex plane

In this paper we are concerned with the properties of the dynamical system defined byf ,
not on the real line, but in the complex plane. We shall see that as long as we avoid the
real line, the behaviour off is quite simple, and more easily described than the behaviour
on the real line.

We use the symbol0′ to denote the set0 with the real line removed. As we saw in the
previous section, the functionf maps the region0, defined by equation (68), onto itself.
Clearly, if z is on the real line, so isf (z) and also all the pre-imagesw such thatf (w) = z.
Hence we can also regardf as a map from0′ onto itself.

We partition0′ into a countable set of regions{0n : n = 0, 1, . . .}, defined in terms of
the mapf as follows.

A complex numberz is in 00 if it is a period-two fixed point of the mapf ; that is, if
f 2(z) = z, or (

1

z
−m1

)−1

−m2 = z (79)
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for some pair of non-negative integersm1, m2. This equation can be rearranged to give a
quadratic inz which has real roots unlessm1 = m2 = 0. So if z is a period-two fixed-point
in 0′, we must havem(z) = 0, and hence

Re
1

z
6 1 (80)

where Rew denotes the real part of a complex numberw. If we write z in terms of its real
and imaginary parts,

z = x + iy (81)

then the condition forz to be in00 is

y2 > x(1 − x) . (82)

The set00 therefore covers the whole of0 apart from the interior of the circle of radius12
with centrez = 1

2 (figure 1).
We now define0n, for n > 0, to be the set of pointsz which take exactlyn iterations

of the mapf to reach00. That is,

0n = {
z : f n(z) ∈ 00 but f n−1(z) 6∈ 00

}
. (83)

For n > 1, we have

0n = f −1(0n−1) (84)

wheref −1(A) denotes the pre-image of the setA.

Figure 1. The regions0 and00 in the complex plane.0 is the whole strip 0< Rez 6 1,
including the circle and the shaded region in the diagram.00 is the shaded region only.
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Figure 2. The regions01 and02 in the complex plane. Subsets of02 are numbered 1, 2, . . . .

Figure 2 is a picture of the sets01 and02. The curve which separates01 from 02

consists of all the pre-images of the circle in figure 1 under the mapf . As we can see from
figure 2, the set02 consists of an infinite sequence of disjoint regions, each corresponding
to a different value ofm(z) in equation (67). We number these 1, 2, 3, . . . as in the diagram.
Regionm is mapped into the circle in figure 1 by the functionz → 1/z −m.

Each of the disjoint regions in figure 2 contains an image of the entire sequence of
regions within itself. These sub-regions contain the set03. The boundaries of the sets
01, 02, . . . form a self-similar pattern in the complex plane, which has detail on increasingly
fine scales as we approache the real axis (figure 3). As we shall see, this detail is related
to small-scale structure in the functionS(z).

The union of all the regions00, 01, . . . is the set0′. This means that any complex
numberz which has Rez 6= 0 will reach00 after a finite number of applications of the
mapf .

This analysis of the mapf allows us to define a unique continued-fraction representation
for complex numbers in0′. If z is in 0n, thenf n(z) is in 00, so we can write

z̃ = f n(z) (85)

where z̃ is in 00. Using the definition off (equation (67)), we can invert this equation,
finding

z = 1

a1 + 1

a2 + 1

. . .

1
an + z̃

(86)
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Figure 3. The boundaries of the regions0i in the complex plane.

or, in the notation of equation (71),

z = [a1, a2, a3, . . . , an, 1/z̃] . (87)

With the convention thatn is chosen, as above, to be the smallest integer such that
f n(z) ∈ 00, this equation defines a unique continued-fraction representation for any complex
numberz in 0′.

We can think of the integers{a1, a2, . . . , an} as the address of the pointz in the complex
plane. z lies inside the region numbereda1 in figure 2. Inside this region is an infinite
sequence of subregions, andz lies inside thea2th of these. We continue, specifying smaller
regions of the complex plane, until we reach the last non-zeroaj . This specifies which
of an infinite sequence of pre-images of00, all contained within the region defined by
a1, a2, . . . , aj−1, containsz. Figure 4 shows a set of these pre-images. The location ofz

within one of these pre-images is specified byz̃.
As the timeτ increases, andz follows its simple straight-line trajectory through the

complex plane according to equation (41), the complex numberz̃ follows a much more
complicated path. Whenτ is small,z is in 00 and soz̃ = z. However, whenz reaches the
boundary of00 and crosses into01, the two complex numbers part andz̃ begins crossing
and re-crossing the set00. As z moves into the parts of the complex plane which have
finely detailed structure in figure 3,z̃ must cross00 more and more frequently.

6.4. Implications for the functionS(z)

We shall now use the knowledge which we have collected about the dynamics of the mapf

to examine the complex functionS(z) defined by equation (47). Equations (63)–(66), which
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Figure 4. An infinite set of pre-images of00 (regions numbered 1, 2, 3, . . .). In region 1,S(z)
has square-root singularities at the points A and B, and an essential singularity at C.

describe the properties ofS(z) and the related functionT (z) under some transformations in
the complex plane, will lead us to an equation which shows how the functionS(z) changes
whenz is repeatedly transformed by the mapf . We use the notation

zk = f k(z) (88)

to simplify our equations.
The functionT (z) transforms in a particularly simple way under an even number of

repeated applications of the mapf . From equations (63)–(66), we obtain

T (z) = (zz1)
−1/2 exp

(
iπ

4

[
1

z
− z1

])
T (z2) . (89)

Sincez andz1 are related by the mapf , we have simply

T (z) =
(
im(z)

zz1

)1/2

T (z2). (90)

If we apply the transformation repeatedly, we obtain, for evenn,

T (z) = i [m(z)+m(z2)+···+m(zn−2)]/2(zz1z2 · · · zn−1)
−1/2T (zn). (91)

By combining equations (63) and (64) with the last equation, we find a similar expression
for S(z), also valid whenn is even:

S(z) = i[m(z1)+m(z3)+···+m(zn−3)]/2exp

(
iπ

4

[
1

zn−1
− z

])
S(zn) . (92)

To put this equation in its final form, we take the complex modulus, and neglect the
appearance ofz in the exponent, since we shall be interested in the limiting behaviour as
the imaginary part ofz becomes small. We then writezn−1 in terms ofzn, obtaining

|S(z)| ' 1

|zz1 · · · zn−1|1/2|e
−iπzn/4S(zn)| . (93)
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For values ofz in one of the sets0m wherem is even, we can use this equation as it
stands, since in this casez̃ = zn. We re-write (93) as

|S(z)| ' 1

|zz1 · · · zn−1|1/2R(z̃) (94)

where

R(z̃) = |e−iπz̃/4S(z̃)| = eπỹ/4|S(x̃ + iỹ)| (95)

and z̃ = x̃ + iỹ. We note that in this casẽz lies in the upper half of the region00; that is,
ỹ > 0.

Whenz lies in a set0m for whichm is odd, we setn = m+ 1, so that

zn = f (z̃) = 1

z̃
(96)

and

|S(z)| ' 1

|zz1 · · · zn−1zn|1/2R
(

1

z̃

)
(97)

where now 1/z̃ lies in the upper half of00.
Equations (94) and (97) give us the modulus of the functionS(z), for any z in 0′, in

terms of the functionR(z) evaluated at points in the upper half of00. Before we can draw
conclusions about the behaviour ofS(z), we must first look atR(z).

In section 5, we derived equation (55), which is an approximate expression forS(z),
valid wheny(1− y) � x2 . This gives us the approximate behaviour ofR(z) in the corner
of 00 nearz = 0: in this region

R(z) ' 1

|z|1/2 . (98)

The approximation (55) is also valid whenx < 0. Since, from equation (65),S(z + 1) =
S(z), the behaviour ofR(z) close toz = 1 is similar to that nearz = 0. In the corner of
00 close toz = 1, we therefore have

R(z) ' 1

|z − 1|1/2 . (99)

It is clear from the definition ofS(z) (equation (47)) that, for large values ofy, all terms
in the sum apart from those withJ (J + 1) = 0 are exponentially small. For large values
of y, we therefore haveS(z) ' 2, and

R(z) ' 2eπy/2 . (100)

Figure 5 is a plot of the functionR(z). We can see that the three equations (98)–(100)
capture, at least qualitatively, the behaviour of the function in the part of00 above the
real axis. Away from the two singularities atz = 0 and z = 1, R(z) varies smoothly,
being well approximated by equation (100). The only significant features ofR(z) in the
region of interest are the three singularities described by equations (98)–(100): square-root
singularities atz = 0 and atz = 1, and an essential singularity at infinity.

We are now ready to draw some conclusions about the behaviour of the functionS(z)

near the real line. If the set0m containingz has an even value ofm, then we can use
equation (94). As we allowz to vary within the set0m, most of the variation inS(z)
will come from changes iñz. Therefore within each pre-image of00 in figure 4, there are
three singularities ofS(z): one for each of the three singularities inR(z). For example,
in region 1, there are square-root singularities at the pointsA and B, and an essential
singularity at the pointC.
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Figure 5. The functionR(z), evaluated in the part of00 above the real axis. The form of the
function is dominated by the three singularities atz = 0, z = 1 andz = ∞.

Figure 6. The modulus of the functionS(z).

Whenm is odd, we must use equation (97). The situation is very similar. The only
difference is that we must useR(1/z) instead ofR(z). Hence in this case we have square-
root singularities at the pointsB andC, and an essential singularity atA.

We now have a picture of the functionS(z) throughout the upper half of0′. In the
region

x2 � y(1 − y) (101)

S(z) varies smoothly according to equation (55), with the square-root singularity atz = 0
dominating the function. As we increase thex-coordinate, we move away from this region
whereS(z) is simple and smooth, into areas of fine detail. Inside each pre-image of00,
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Figure 7. U(τ ) as a function ofτ : (a) shows the real part ofU(τ ) as a function ofτ for j = 10,
K = 10; (b) shows the trajectory ofU(τ ) in the complex plane for the same values ofj andK;
(c) and (d) show the same information for the valuesj = 50,K = 100.

there are three singularities which influence the behaviour ofS(z), and it is only when we
near these singularities that the function varies rapidly. All the singularities are on the real
line, and as we move closer to the real line, the pattern formed by the sets0i becomes
more complex, and the behaviour ofS(z) becomes more complex. Figure 6 is a plot of the
modulus ofS(z), which illustrates some of this complexity.

6.5. The trace of the quantum evolution operator at long times

Now that we have a qualitative picture of the behaviour ofS(z), we can see how the trace
of the quantum evolution operator,U(τ ), changes with increasing dimensionless timeτ .
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Figure 7. Continued.

The trace is related to the derivative ofS(z) by equation (48). As we saw in section 5, at
times less than a critical timeτc ∼ j

√
K, or in terms of the real timet ,

tc ∼ j
√
K

γh̄
(102)

an approximation gives a simple expression (56) forU(τ ). As S(z) varies in a more
complicated way for larger values ofx, the behaviour ofU(τ ) for large values ofτ is
similarly complicated. As we can see from equation (41), the imaginary part ofz is
inversely proportional toj (j + 1)K, whereK is the number of spins andj is the angular
momentum of each spin. Therefore increasing the value ofj or of K moves the trajectory
of z (equation (41)) closer to the real axis, leading to more complex behaviour ofS(z) and
also ofU(τ ).
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Figure 7 shows how the trace ofUt varies withτ for two different values ofj andK.
These plots were obtained by summing the series (39) directly. We can clearly see the part
of the trajectory whereτ � j

√
K and the time dependence is simple. For large values

of τ , U(t) follows a more complicated path in the complex plane. For values ofτ of order
j
√
K, we have regular oscillations which stem from thek = ±1 terms in equation (51).
The functionU(τ ), the trace of the quantum-mechanical evolution operator, does not

give us a complete picture of the time dependence of a quantum system. However, since it
is the sum of the time dependences of all the eigenstates, it does give an indication of the
way typical quantum-mechanical quantities evolve with time.

7. Conclusion

For the model system which we have studied, there are two very different regimes of time
dependence for the trace of the evolution operator. For ‘short’ times, the time dependence
is simple, but for longer times it is much more complicated.

This breakdown of a simple approximation at long times is behaviour which we expect
from a semiclassical limit. What is more interesting is the way in which this situation
changes when we varyj , the size of each spin, andK, the number of spins. The time
at which the simple approximation breaks down (equation (102)) grows withK and j ,
depending on the parameterN = Kj2. The parameterN also appears in the approximation
(56) for U(τ ) at short times, and as a measure of the complexity of a trajectory ofU(τ )
at long times. SoN is a single parameter which controls the combined thermodynamic–
classical limit.

As we saw in section 1, we expect chaos to shorten the time of validity of the
semiclassical approximation so that the time when the approximation breaks down is
proportional to the logarithm of 1/h̄. The algebraic dependence of the critical time
(equation (102) on ¯h and on j and K is therefore a sign that the underlying classical
dynamics of our system is not strongly chaotic. This is not a surprise, given the simple
Hamiltonian (10).

The results of this paper are a reminder that the semiclassical limit of quantum
mechanics, although it provides a simplifying approximation for some calculations, is not
uniformly simple or easy to characterize. At long times the semiclassical limit is irregular
and complex. The question which motivated the research presented here was the following:
does increasing the size of a system diminish this complexity, leading to a simple and well
behaved combined thermodynamic–classical limit? If this were so, it would suggest that
the difficulties associated with the classical limit in small systems are not as important as
they seem: they are smoothed out when we move to a macroscopic scale. But, at least in
the case of the spin system studied here, the limit of large system size does not make the
situation more straightforward. Rather, increasing the size of the system reinforces the effect
of the semiclassical limit, generating simplicity at short times but adding to the long-time
complexity. Further work is needed to determine whether this is true more generally.
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Appendix. Convergence of degeneracies to a Gaussian

This appendix addresses the question of the convergence of the degeneracies in the spin
model to a Gaussian approximation for large values ofj andK.

Given the distribution

n
j

1(m) =
{

1 |m| 6 j

0 |m| > j
(A1)

we discuss the behaviour for largej , K of the multiple convolutionnjK(m), defined
recursively by

n
j

K+1(m) =
j∑

m1=−j
n
j

1(m1)n
j

K(m−m1) . (A2)

It is a consequence of the central limit theorem (Feller 1968) that for largeK, njK converges
to a Gaussian:

n
j

K(m) → (2j + 1)K
1

(2πS2)1/2
e−m2/2S2

(A3)

where the factor(2j+1)K derives from the fact that the distribution (A1) is not normalized,
and whereS2 is the variance of the multiple convolution, given by

S2 = Kσ 2 (A4)

σ 2 being the variance of the distributionnj1(m). The quantityσ 2 is easily calculated from
the formula for the sum of the squares of the firstj integers (see, for example, Arfken 1985,
p 336). We thus obtain

S2 = Kj(j + 1)

3
. (A5)

The convergence of the multiple convolution to a Gaussian is not in doubt, since the
distributionnj1 has finite moments and satisfies the conditions for the central limit theorem.
However, we shall use the Gaussian as an approximation in the region of largej andK,
and so some idea of how the convergence depends onj is necessary.

We define a discrete Fourier transform

f̃ (x) =
∞∑

−∞
f (m) eimx (A6)

with the inverse

f (m) = 1

2π

∫ π

−π
dx f̃ (x) e−imx . (A7)

A convolution theorem holds, and so, since

ñ
j

1(x) = sin(j + 1
2)x

sinx/2
(A8)

we have the following expression for the multiple convolutionnjK(m):

n
j

K(m) = 1

2π

∫ π

−π
dx e−imx

[
sin(j + 1

2)x

sinx/2

]K
. (A9)
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Figure A1. The functiony = sin(j+ 1
2 )x

sinx/2 . For large values ofj , the central peak, with width of
order 2π/j , dominates the integral. The graph plotted here is for the valuej = 8.

From a sketch of the function in square brackets in the last equation (figure 8), we can see
that for largej , the dominant contribution to the integral comes from the small region of
width 2π/j aroundx = 0.

For comparison, consider the continuous version of the discrete problem above. We
take the multiple continuous convolutionνjKof the functionnKj defined by equation (A1).
That is,

ν
j

K+1(m) = 1

2π

∫ ∞

−∞
dx nj1(x)n

j

K(m− x) . (A10)

Using continuous Fourier transforms and the convolution theorem, we can easily derive a
continuous version of equation (A9):

ν
j

K(m) = 1

2π

∫ ∞

−∞
dx e−imx

[
sinjx

x/2

]K
. (A11)

Again, for largej the dominant contribution to the integral comes from a small region of
width 2π/j aroundx = 0.

For the continuous version of the problem, a change inj amounts to a change of scale
in m. Hence the convergence of the continuous multiple convolution to a Gaussian must
be uniform in j , in the sense that the fractional error in the Gaussian approximation is
independent ofj .

We now compare the Fourier integrals for the discrete and continuous versions of the
problem, equations (A9) and (A11). For largej , we can replacej + 1

2 with j , and, in the
small interval which dominates the integrals, sinx/2 by x/2. Hence the difference between
the two equations becomes small for largej . This allows us to extend the conclusion of
the previous paragraph to the discrete version of the problem. That is, the convergence of
the discrete multiple convolution to a Gaussian is uniform inj .
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